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Abstract

Purpose – The purpose of this paper is to investigate the geometric effects and pulsatile
characteristics during the stenotic flows in tapering arteries.
Design/methodology/approach – The low Reynolds number k� ! turbulence model is applied to
describe the stenotic flows in the tapering arteries in this paper. The results are divided into two
sections. The first section characterizes the geometric effects on the turbulent flow under steady
condition. The second section illustrates the key physiological parameters including the pressure
drop and wall stress during the periodic cycle of the pulsatile flow in the arteries.
Findings – The tapering and stenoses severity intensify the turbulent flow and stretch
the recirculation zones in the turbulent arterial flow. The wall shear stress, pressure drop and
velocity vary most intensively at the peak phase during the periodic cycle of the pulsatile turbulent
flow.
Originality/value – This paper provides a comprehensive understanding of the spatial-temporal
fluid dynamics involved in turbulent and transitional arterial flow with stenoses. The low Reynolds
number k� ! turbulence model method is applied for the analyses of the geometric effects on the
arterial flow and fluid feature during the periodic cycle.
Keywords Heart, Pulsating flow, Turbulent flow, Simulation, Fluid dynamics
Paper type Research paper
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Nomenclature

I ¼ turbulence intensity

k ¼ turbulent kinetic energy (m2/s2)

p ¼ pressure (N=m2)

Re ¼Reynolds number

T ¼ time period (s)

u ¼ velocity (m/s)

w ¼ oscillation frequency (rad/s)

" ¼ turbulent energy dissipation
rate (m2/s3)

� ¼ dynamic viscosity (kg/m-s)

� ¼ density (kg/m3)

�ij ¼Reynolds stress tensor (kg/m-s2)

! ¼ specific dissipation rate ("=k)

Subscripts

i, j ¼Cartesian components

k ¼ relative to turbulent kinetic
energy

0 ¼ relative to origin

m ¼ gradient amplitude

t ¼ relative to turbulence

Introduction
Arteriosclerosis is a common heart attack and stroke disease in the industrialized
world due to excess sedentary and rich food. Arteriosclerosis in the carotid artery
obstructs blood flow to the brain and stimulates the formation of stenoses. Arterial
hemodynamics plays an important role in pathogenesis analysis of arterioscleroses,
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most of which are associated with abnormal blood flow in stenotic arteries. Stenotic
flow is inherently pulsatile due to the cyclic nature of the heart pump, which will
generate turbulence with low Reynolds number. In the blood flow, the typical Reynolds
number range varies from 1 in small arterioles to approximately 4,000 in the largest
artery, the aorta (Ku, 1997). In the presence of sufficiently severe stenoses during the
cardiac cycle, the transition to turbulence flow was found in the downstream of
stenoses (Roshko, 1954; Stein and Sabbah, 1976). Pulsatility also creates a periodic
generation of turbulence, the temporarily turbulent flow was observed at Reynolds
numbers as low as 400 even in a circular tube without stenosis during the deceleration
of a pulsating flow (Winter and Nerem, 1984). Turbulence influences many
physiological processes with its effects on the pressure drop and wall shear stress in
stenotic arteries (Giddens et al., 1993). Therefore, experimental and computational
studies of stenotic blood flow are of interest among bioengineers and medical
researchers. Ahmed (1998) reported an experimental investigation of pulsatile flow in a
smooth stenosis. Ojha et al. (1989) studied flow through constricted tubes using a
photochromic technique. Gidden and co-workers (Deshpande and Giddens, 1980;
Ahmed and Giddens, 1983a, b, 1984; Lieber and Giddens, 1990) constructed pulsatile
flow models in blood vessels, and measured velocities and wall shear stress using laser
Doppler velocimetry. Marshall et al. (2004) measured the time-resolved velocity using
magnetic resonance imaging and calculated the wall shear stress vectors.
Experimental results were compared qualitatively with the corresponding
computational fluid dynamics (CFD) predictions. The results show that, in the stenosed
phantom, flow in the bulb region of the internal carotid artery was concentrated along
the outer wall with low flow recirculation near the inner wall. And the converse with
low flow was found near the out wall of the bulb in the normal phantom.

The experimental analysis of complex flows, particularly those that are pulsatile
and transitional, is both labor-intensive and expensive. With the advance of computer
speed and the increasing resolution and complexity of numerical simulation, CFD have
begun to play a major role in improving our understanding of biofluid flows in general
and blood flow in arteries in particular (Ku, 1997; Berger and Jou, 2000). There have
been several recent studies to examine the turbulence structure in low-Reynolds
number stenotic flows. The steady simulations were performed by Ghalichi et al. (1998)
and Lee et al. (2003), both reported results using Wilcox k� ! model turbulence model
for simulations of flow through straight tubes with stenoses. Both groups found that
the k� ! model to be suitable when compared to the experimental data obtained by
Ahmed and Giddens (1983a, b) and Deshpande and Giddens (1980). Scotti and Piomelli
(2001a, b) conducted direct numerical simulation and large eddy simulations (LES),
Reynolds averaged Navier-Stokes (RANS) simulations of pulsatile turbulent channel
flow subjected to an unsteady pressure gradient. The results showed that the
fluctuations generated in the near-wall region are restricted to a certain distance from
the wall, depending on the oscillation frequency. Mittal et al. (2001) applied LES to
investigate the pulsatile flow model through a simple arterial stenosis, the flow
downstream of the stenosis transitions to turbulence and exhibits all the classic feature
of post-stenosis flow described by former results. Varghese and Frankel (2003)
conducted numerical modeling of turbulent flow in stenosed tubes by FLUENT using a
variety of two-equation turbulence models (three variants of the k� " model and the
transitional k� ! model). It was found that the low-Re transitional k� ! model was in
agreement with the experimental measurement results by Ojha et al. (1989) and Ahmed
and Giddens (1983a). Jung et al. (2006) performed a multiphase transient non-
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Newtonian three dimensional CFD simulation for pulsatile flow in an idealized curved
section of a human coronary artery. They correlated the lower wall shear stress with
the outside curvature by introducing the effect of red blood cells. These predictions
provided insight into how blood-borne particulates interact with artery walls. Li et al.
(2007) investigate the flow field and stress field for different degrees of axisymmetric
cosine shape stenoses with varying diameter reduction of 30, 50 and 70 percent,
respectively. The turbulence model with the consideration of fluid-structure and
realistic boundary conditions was developed. Taber et al. (2007) applied the commercial
software (Comsol Multiphysics) to explore the transition from peristaltic to pulsatile
flow in the embryonic heart tube. This study illustrated the interrelationship between
form and function in the early embryonic heart. Nguyen et al. (2008) quantified the risk
of atherogensis based on the average wall shear stress on pulsatile blood utilizing the
software package FLUENT. They analyzed the effects of internal carotid artery angles,
off-plane angles and the symmetric bifurcations on the wall shear stress and the risk of
vascular disease.

As tapering is a significant aspect of arterial systems in mammals and human
beings; present study will focus on the pulsating flow through tapering stenosed
arteries. Wilcox’s low-Re transitional k� ! model has been chosen for current
simulation because, as noted above, it has been reported to be successful in predicting
transitional flows at low Reynolds number (Wilcox, 1993). More details on Wilcox’s
k� ! models can be found in books on turbulent flows and modeling (Wilcox, 1993;
Pope, 2000). Since the development of arteriosclerosis reduces the elastic property of
the arterial wall, it is reasonable to assume the arterial wall is rigid in current study.
The fluid is considered incompressible and Newtonian in consistence with most
experimental studies. The flow features include strong wall shear stress, recirculation
and turbulence in the arterial flow with stenoses, which have substantial effects on the
hemodynamics and potentially therefore the evolution of the plaque, such as
arteriosclerosis. To gain a comprehensive understanding of the spatial-temporal fluid
dynamics involved in the stenotic fluid flow, this paper utilizes the numerical method
for the analysis of turbulent and transitional blood flow in a tapering artery with
stenoses.

Turbulence models
Figure 1 shows a schematic diagram for pulsatile blood flow in a tapering stenotic
artery. Due to the axisymmetry with respect to the centerline, the calculation will be
conducted on only half of the domain using the low Reynolds number k� ! turbulence
model. The RANS equations represent transport equations for the mean flow
quantities, with the consideration of the effect of turbulent eddies. The instantaneous
flow variables in the Navier-Stokes equations such as velocity, u, can be written as the
sum of an average value, �uu, and a fluctuation about the value, u0. Other scalar variables

Figure 1.
Physical model for
pulsatile flow in a

tapering stenosed artery
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such as pressure can be described in the same form. Applying this decomposition to
the Navier-Stokes equations yields the RANS equations. The governing equations for
the blood flow in the tapering stenotic arterial segment can be written as:

@�uui

@xi

¼ 0 ð1Þ

�
D�uui

Dt
¼ � @

�pp

@xi

þ @

@xj

�
@�uui
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where DðÞ=Dt ¼ @ðÞ=@t þ uj½@ðÞ=@xj� and � is the dynamic viscosity.
As seen above, averaging the momentum equations gives rise to a new term known

as Reynolds stress tensor, ��uiuj. It represents the time-averaged rate of momentum
transfer due to turbulence that can be expressed as

��uiuj � �t
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where �t is the turbulent eddy viscosity. A two-equation k� ! turbulence model can be
used to model the cross correlations which arise from the nonlinear terms in the
governing equations and thereby close the equations. The eddy viscosity is modeled
as:

�t ¼
�k

!
ð4Þ

And the turbulent transport equation for kinetic energy and turbulence dissipation can
be described as:
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where �� ¼ 0:5; �� ¼ 0:072; � ¼ 0:5; � ¼ 1:0, and � ¼ 0:072 (Wilcox, 1993). The
standard k� ! model is described by Equations (3)-(6) combined with the given
coefficients.

The low Reynolds number k� ! model has a transitional variant, because the flow
is not fully turbulent in the entire domain or throughout the entire pulse cycle. The low
Reynolds number k� ! model is similar to the standard model except for some
modifications. The key modification is the low-Re correction factor applied to the eddy
viscosity (Wilcox, 1993)

�t ¼ ��
�k

!
ð7Þ
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which influences the entire model by appearing in the momentum and turbulence
equations. The low-Re correction factor is derived from

�� ¼ ��1
��0 þ Ret=Rk

1þ Ret=Rk

� �
;Ret ¼

�k

�!
ð8Þ

where Rk ¼ 6:0; ��0 ¼ 0:024, and ��1 ¼ 1:0 (Wilcox, 1993). This factor varies from 0-1
and influences the turbulence model based on the local flow structure. The transport
equations for k and ! remains as in Equations (5) and (6), except with the addition of
the low-Re correction in the eddy viscosity and the modification of some coefficients to
make them functions of the local flow structure. In the equation for turbulent kinetic
energy, the coefficient on the dissipation term is described as

�� ¼ ��1
4=15þ ðRet=R�Þ4

1þ ðRet=R�Þ4

 !
ð9Þ

where R� ¼ 8 and ��1 ¼ 0:09 (Wilcox, 1993). The production coefficient for turbulent
dissipation equation is calculated from

�� ¼ �1
��

�0 þ Ret=R!

1þ Ret=R!

� �
ð10Þ

where R! ¼ 2:95; �1 ¼ 0:52; �0 ¼ 1=9 (Wilcox, 1993). For the time periodic
calculation, the time period, T, was calculated in terms of the oscillation frequency, w,
as T ¼ 2 �=w. The time step was then calculated by dividing the time period with the
number of iterations required for convergence during each step. The temporally
periodic boundary condition at the inlet of the artery can be written as:

u ¼ u0 þ um sinðwtÞ ð11Þ

where u0 is the mean velocity and um is the velocity gradient amplitude. The
turbulence boundary condition at the inlet can be described as

k ¼ 3

2
ðu0IÞ2; " ¼ 0:09 k2

��	
ð12Þ

I ¼ 0:16 Re�
1
8;Re ¼ �u0H

�
ð13Þ

At the outlet cross section, we assume the flow field has no change, that is

@ui

@xi

¼ 0 ð14Þ

Since the arterial walls are assumed to be no-slip, the velocity at the wall can be
written as

ui ¼ 0 ð15Þ
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Numerical solution
Our numerical algorithm utilizes the finite volume method with the collocated
variable arrangement to solve two-dimensional, RANS Equations described by
Equations (1)-(15). The meshing is conducted by applying boundary-fitted non-
orthogonal meshing technique (see Figure 2). Since the grid lines follow the
boundaries, the boundary conditions are more easily implemented than with stepwise
approximation of curved boundaries. Convective terms in the momentum and
turbulence equations were descretized using a first-order upwind scheme. A first-order
temporal discretization scheme was used for all transient calculations. The mass-
momentum equations were solved in a segregated manner using the simple algorithm
and all results were converged to residual of less than 10�4, normalized using the inlet
mean velocity.

When the Favre variables are used for the expansions of the variables and
Reynolds averaging is applied, the RANS equations have the same form as the laminar
equations provided the molecular viscosity, �, is replaced by the effective viscosity
�eff ¼ �þ �t . However, as the time scale associated with the turbulence is much
shorter than that connected with the mean flow, the equations for the k� ! model are
much stiffer than the laminar flow. For this reason, in the numerical solution procedure,
an outer iteration of the momentum and pressure equations in which the value of the
eddy viscosity is based on the value of k and ! at the end of the preceding iteration is
firstly performed. After this has been completed, an outer iteration of the turbulent
kinetic energy and dissipation equations is made. Since these equations are highly
non linear, they have to be linearized prior to iteration. After completing the iteration of
the turbulence model equations, we are ready to recalculate the eddy viscosity and
start a new outer iteration. An important consideration for turbulence modeling is
near-wall treatment, which can be performed by using the wall function approach
(Wilcox, 1993).

The computational domain is half of the artery because of its axisymmetry. The
grids consist of 240� 20 four-noded volumes. The meshing density is relatively heavy
around the stenoses since the boundary-fitted non-orthogonal meshing technique is
employed. To check for grid independence, the grid resolution was increased by a
factor of two in all the directions. The fluid flow case with 75 percent stenoses was
repeated and the difference in the velocity profile was less than 5 percent with the finer
mesh. We utilize a very small time-step �t ¼ 10�4 in order to ensure the convergence
for pulsatile flow case. Steady simulation typically required 1,000 iterations for
convergence, whereas transient simulation typically required 800 iterations per time-
step. The present study first considers steady flow to analyze the effect of tapering and
stenosis on the velocity field and pressure distribution of the artery. Pulsatile
simulations are then performed to analyze the temporal centerline velocity, pressure
distribution and wall shear stress, which are the key factors of incidence of the
arteriosclerosis.

Figure 2.
Two-dimensional view of
the mesh in the vicinity of
the stenoses
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Result and discussion
In order to validate the low Reynolds number k� ! turbulence model, steady flow
computation result is compared to the experiment data by Ahmed and Giddens (1983a)
at different axial locations distal to the smooth stenosis and inlet Re equals to 500.
Figure 3 shows a reasonable agreement with the experimental data. Though this study
mainly concerns the simulation of pulsatile flow through stenosed arteries, it is more
efficient by first considering the steady flows through constricted arteries to
investigate the effects of stenotic severity and tapering on the turbulent flow. Then the
unsteady case will be performed for better understanding the pulsatile flow in a certain
artery. During the computational procedure, we used the characteristic parameters:
D1 ¼ 3:2 mm; D2 ¼ 0:5D1; L1 ¼ 2D1; L2 ¼ L3 ¼ 1:2D1; L4 ¼ 4D1; u0 ¼ 0:5 m=s;
um ¼ 0:25 m=s; � ¼ 1:056� 103 kg/m3, � ¼ 4:03� 10�3 kg/m-s, w ¼ 3:14 rad=s and
T ¼ 0.4 s.

In Figure 4 the dimensionless mean horizontal velocity (u=u0) profile in the vicinity
of the 75 percent and 90 percent area reduction stenoses is plotted. The same inlet
velocity profile, u0 ¼ 0:5 m=s, was specified for both cases. The maximum velocity
umax reaches 1:444 m=s for the 75 percent stenoses case and reaches 4:18 m=s for the
90 percent stenoses case at the throat of the second stenosis. For the 75 percent stenoses
case, the velocity profiles at the upstream of the stenoses and at a certain distance from
the second stenosis are positive, while at the downstreams of the stenoses the velocity
profiles show a reverse flow near the arterial walls. When the severity of the stenoses
increases to 90 percent, even at the upstream of the second stenosis and at certain
distance from the second stenosis, the reverse flow appears. Compared with the two
arterial flows with different severity of stenoses, when the severity of stenoses
increases, the reverse flow trend is enhanced, and the centerline velocity also increases.

Figure 3.
Velocity profile

comparison of the
computational results

and experimental data

Figure 4.
Comparison of the

velocity profiles with
different stenoses: (a) 75
percent stenoses, (b) 90

percent stenoses
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Figure 5 shows the streamlines of the flow fields in the vicinity of the 75 percent and 90
percent stenoses. The recirculation vortices are founded downstreams of the stenoses.
It is clear that flow separation is closely related to stenosis severity and the separation
region is much greater for more severe stenosis. This is of clinic interest because the
separation region is related to cell residence time and plaque growth (Cao and Rittgers,
1998).

Figure 6 illustrates the contour of pressure distributions for in the vicinity of the 75
percent and 90 percent stenoses. The pressure decreases dramatically across the throat,
and then increases after stenoses to the outlet pressure. The pressure at the throat of
the first stenosis is �0.183 kPa, and drops to �0.516 kPa at the throat of the second
stenosis for the caser with 75 percent stenoses. The contour lines of the pressures
become dense near region with the severe stenoses which means the rapid variation of
the pressures and causes compressive stress in the artery. As can be seen from Figure
6, the pressure varies more strongly with more severe stenoses.

In order to estimate the effect of tapering on the fluid flow in the artery, the velocity
profiles and the streamlines of fluid flow with/without tapering are plotted in Figures 7
and 8. The maximum velocity umax is 1:008 m=s for the flat artery and becomes
4:18 m=s for the tapering artery. It can be seen from Figure 7, due to the effects of
tapering and the flow area reduction, the velocity increases more rapidly from the wall
to the centerline in the tapering artery than that happened in the flat artery. Both
reverse flows and positive flows in the tapering artery are seen to get considerably
steeper compared with what occurs in the flat artery. Additionally, the recirculation
zones present downstream of the stenoses in the tapering artery are seen to grow
compared with that happened in the flat artery as can be seen from Figure 8.

Figure 5.
Comparison of the
streamlines of the flow
fields with different
stenoses:
(a) 75 percent stenoses,
(b) 90 percent stenoses

Figure 6.
Comparison of pressure
distribution with different
stenoses:
(a) 75 percent stenoses,
(b) 90 percent stenoses
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Turbulent pulsatile flow
Figure 9 shows the centerline velocity profiles for the 90 percent stenoses case when
t ¼ 2:2 s (accelerate phase), t ¼ 2:5 s (peak phase), and t ¼ 3:2 s (decelerate phase). Of
the three times, as expected, the maximum velocity is seen to occur at the peak phase
and occurs just downstream of the second stenosis midpoint. In Figure 8, centerline
velocity increases slowly at the area before the first stenosis at all three times, and
increases rapidly upstream of the first stream because of the sharp reduction of flow
area. The centerline velocity peaks at the throat of the first stenosis. And then
decreases when the area increases downstream of the first stenosis. The similar
phenomenon happens when the fluid flows through the second stenosis, and velocity
increases/decreases more rapidly upstream/downstream compared with that happened
at the first stenosis.

As mentioned earlier, it has been considered that the distribution and magnitude of
the pressure and the wall shear stress on the arterial channels play important roles in
the genesis and acceleration of arterial disease. For instance, local hypertension may be
directly caused by localized increase in lateral wall pressure (Holman, 1955). It has also
been established that the sites of predilection for atherosclerosis are often correlated
with regions of low shear stress (Ku et al., 1985; Friedman et al., 1981). Figure 10 shows
the centerline pressure distribution for the 90 percent constriction case. As can be seen,
the pressure falls to the lowest level at the peak phase during the period cycle. At all
three times, the pressure falls significantly upstream of the stnoses and then increases
with much lower magnitude downstream of the stenoses. The pressure variation
magnitudes are much higher at the second stenosis compared with those happened at
the first stenosis. Beyond the stenoses, the pressure increases to a value which is
significantly lower than that at the inlet.

Wall shear stress is the tangential drag force produced by blood moving across the
artery. It is a function of the velocity gradient of blood along the wall. Wall shear stress

Figure 7.
Tapering effect on the

velocity profiles in
arteries: (a) tapering
artery, (b) flat artery

Figure 8.
Tapering effect on the

streamlines of the flow
fields in arteries:

(a) tapering artery,
(b) flat artery



HFF
19,5

570

distributions for the 90 percent stenosis case are presented in Figure 11. It shows that
the wall shear stress at the second stenosis reaches to maximum at the peak phase
during the period cycle. Unlike the minimum pressure drop point, which occurred just
downstream of the midpoint of the stenoses, the peak wall shear stress occurs at a
location just upstream of the stenoses. This phenomenon was demonstrated in an
analytical model presented by Young and Tsai (1973). Because of the stenotic severity,

Figure 9.
Instantaneous centerline
velocity profiles in the
tapering artery with 90
percent stenoses

Figure 10.
Instantaneous centerline
pressure profiles in the
tapering artery with 90
percent stenoses
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the peak wall shear stress at the second stenosis is much higher than that at the first
stenosis. At the upstream and downstream corners of the stenoses, wall shear stress is
seen to approach zero, which implies the separation of the fluid flow.

Conclusions
Numerical predictions for turbulent pulsatile flow through two different axisymmetric
stenoses were obtained within the framework of a two-equation turbulence model. The
low Reynolds number k� ! model is applied to solve the governing equations. Under
steady conditions, the effects of tapering and stenosis severity on the fluid flow are
presented and compared. The turbulent flow is intensified and pressure falls more
rapidly with the increasing stenosis severity. The recirculation zones are stretched and
velocity profile varies more rapidly in the tapering artery compared with those in the
flat artery. Under pulsatile conditions, the centerline velocity profile, pressure
distribution and wall shear stress at accelerate, peak and decelerate phases are
investigated. The maximums of velocity and wall shear stress and the minimum of
pressure are reached at the peak phase. The variation of these three parameters is most
significant at the peak phase.
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